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Metastable escape is ubiquitous in many physical systems and is becoming a concern in engineering design
as these designs �e.g., swarms of vehicles, coupled building energetics, nanoengineering, etc.� become more
inspired by dynamics of biological, molecular and other natural systems. In light of this, we study a chain of
coupled bistable oscillators which has two global conformations and we investigate how specialized or targeted
disturbance is funneled in an inverse energy cascade and ultimately influences the transition process between
the conformations. We derive a multiphase averaged approximation to these dynamics which illustrates the
influence of actions in modal coordinates on the coarse behavior of this process. An activation condition that
predicts how the disturbance influences the rate of transition is then derived. The prediction tools are derived
for deterministic dynamics and we also present analogous behavior in the stochastic setting and show a
divergence from Kramers activation behavior under targeted activation conditions.
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A chain of strongly coupled oscillators, each of which is
influenced by a multistable potential, can be viewed as a
coarse representation of many physical systems which have
more than one stable state or conformation from macromol-
ecules to Josephson junctions and power grids. The transi-
tions between these conformations are often observed in
typical behavior �e.g., biomolecules� while at other times it is
detrimental �e.g., extended power grids�. Such transitions are
often driven by stochastic influence �e.g., thermal noise�, but
in some cases, as in molecular systems, large local distur-
bances from the influence of enzymes, ligands, or other me-
chanical forces initiate the process �1,2�. Switching between
these conformations typically follows one of two scenarios.
In some cases, the states of the oscillators are weakly
coupled which allows a few oscillators to go through excur-
sions to a second stable state, eventually pulling the other
oscillators along with them. In other cases, the oscillators
may be strongly coupled, which forces the oscillator states to
behave collectively and a coherent motion brings the entire
chain over a global saddle at once �3�. In this paper, we
investigate the second case, characterizing this global barrier
with respect to local barrier heights, and consider different
aspects of the transition process, including how the spatial
structure of the disturbance influences the transition rate.

The Hamiltonian for an N oscillator system with a strong
linear neighbor coupling �we will call this the backbone� and
local nonlinearity takes the form

H = �
i=1

N
1

2
q̇i

2 +
1

2
B�qi−1 − qi�2 + �U�qi� , �1�

where qi�R, B is the linear coupling strength, and � is a
small parameter. We will refer to this Hamiltonian for �=0
as the unperturbed or linear dynamics �note that all variables
in this paper are real valued�. For our analysis, the function U
is a local bistable nonlinear potential. We have studied this

function using a Morse potential acting on pendula in �3–5�
where we compared the model to the dynamics of macromol-
ecules and studied its qualitative behavior. The exponential
form of the Morse potential makes analytical progress diffi-
cult, and so in this current study we investigate a 2–4 �or
Duffing-type� potential to gain both qualitative and quantita-
tive understanding of the phenomena. The 2–4 potential is:

U�qi� = − �1

2
�qi

2 −
1

4
qi

4� , �2�

where � is a constant that characterizes the distance between
the two nonzero equilibria �qeq= �0, ��	� and adjusts the
curvature of the saddle which slightly alters the dynamics to
better match the real behavior of proteins; see �6�. This po-
tential has the same behavior as the Morse potential but is
much easier to analyze. The backbone has periodic boundary
conditions �qN+1=q1� and we have chosen the coupling
strength in this backbone is much stronger than the local
nonlinearity �B���. When this is the case the transition pro-
cess is collective and coordinated �as described in �3��.

In Fig. 1 we present data from a simulation demonstrating
such behavior using �=1.0�10−3, �=1, and B=1 �all nu-
merical simulations in this paper were performed using a
fourth-order symplectic method �7� with a fixed stepsize of
0.005�. In this numerical experiment, we allow all but two
oscillators to be at rest at the left equilibrium. Two of the
oscillators are disturbed and this disturbance propagates
through the oscillator chain, eventually bringing all the os-
cillators over their local saddle points �at x=0� and into the
right potential well. This transition process is very coherent
as demonstrated by the collective motion which follows the
mean of the oscillator positions.

In systems where the strength of the coupling is of the
same order as the local nonlinearity, neighboring oscillators
do not restrain each other from excursions across local bar-
riers. These excursions, or breathers, initiate the transition
process of the entire chain. In �8� it was shown that the
transition process occurs when a set of small breathers merge
into larger breathers with enough strength to pull the entire*bryane@engr.ucsb.edu
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oscillator array over the barrier. In �9� the same research
team developed an analytical calculation for the transition
process by considering a single oscillator diffusing through a
separatrix layer and subsequently pulling the other oscillators
along. This theory does not work in our setting since the
coupling strength is much greater than the local nonlinearity
and excursion of a few oscillators and formation of breathers
is discouraged. We find that it is not excursions of individual
or groups of oscillators that drives the transition process, but
rather dynamics of the mean position of all oscillators. In
fact, we show that, in the averaged sense, the dynamics of
the mean position and velocity of all oscillators are sufficient
to predict specific quantitative properties of the activation
process.

I. COORDINATE CHANGES

In order to gain insight into the qualitative or coarse be-
havior of this large system of coupled oscillators, we perform
two canonical transformations. The first transformation
projects the dynamics onto the Fourier modes of the back-
bone, which reveals a more global notion of the dynamics.
We choose these coordinates because, due to the translational
symmetry along the periodic chain, the normal basis consists
of Fourier modes �10�. Because we are interested in the en-
ergy requirements for activation, we will then project the
dynamics onto action-angle coordinates. This will not only
highlight the energetic behavior within the modes, it will also
provide a system which is well suited for averaging which
will be performed in Sec. III.

We perform the canonical transformation onto modal co-
ordinates using

qi =
 2

N
�
k=1

N/2−1 � q̂0


2
+ cos�2�ik/N�q̂k +

cos��k�

2

q̂N/2

+ sin�2�ik/N�q̂N/2+k� , �3�

where q̂k are modal amplitudes and k is the wavenumber. The

transformation rules from velocities q̇i to modal velocities q̂̇k
are obtained from time differentiation of Eq. �3�. The zeroth
mode q̂0 is the averaged coordinate �scaled by 
N� and the
coordinates q̂1. . .N/2−1 are typical spatial Fourier modes. This
transformation is very similar to the one from �11�, although
since in this case since the chain has a periodic backbone,
only full Fourier modes are considered.

The transformation �3� is just a projection of the dynamics
onto the orthonormal eigenvectors of the unperturbed Hamil-
tonian ��=0�. Collecting these vectors into a matrix M
which is real, symmetric, and orthonormal �the same matrix
is used in �5��, we have the Hamiltonian in modal coordi-
nates:

H�q�̂ ,q�̇̂� =
1

2
q�̇̂Tq�̇̂ + Bq�̂T	q�̂ + �U�MTq�̂� , �4�

where 	 is a square matrix with the linear frequencies on its
diagonal. These real nonzero frequencies 
�
= 

2−2 cos�2k� /N�
, k=1,2 , . . . ,N−1 of the unperturbed
Hamiltonian start at zero, increase nearly linearly near zero
and collect at 2.0 as k grows large.

We present a second numerical experiment in Fig. 2 using
the same parameters as in Fig. 1, but in this case the simu-
lation is performed in modal coordinates. Unlike the experi-
ment in Fig. 1, the zeroth mode is placed at its equilibrium
meaning that there is no tendency of the mean away from the
initial potential well, but all other nonzero modes are dis-
turbed. The disturbance in these nonzero modes eventually
influences the zeroth mode, driving it off its equilibrium and
eventually forcing a transition to the other potential well.

In Fig. 2, the structure of a system which has one highly
nonlinear state coupled to many nearly linear �integrable�
oscillators is evident. In the upper left subplot the state space
of the zeroth mode is shown, illustrating that during the ac-
tivation process, the mean of the oscillator positions travels
from one potential well to the other. It is also clear that the
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FIG. 1. �Color online� Snapshots of the evolution of 100 oscil-
lators from one equilibrium �−1.0� to the other �1.0� in the potential
�2� ��=1.0�10−3 , �=1, B=1�. As a disturbance, two oscillators
are perturbed. Because the coupling is much stronger than the non-
linearity, the transition is collective, closely following the mean
�thick black line�.
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FIG. 2. �Color online� Example numerical simulation in modal
coordinates. Each subplot shows the state space of the first 15
modes �the modal amplitude and its time derivative�. The upper left
subplot is the zeroth mode illustrating all oscillators in transition
from one potential well to the other. The initial condition of the
zeroth mode is the large dot. The trajectories in the lower modes �1
and 2� are growing in radius for this particular simulation.
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response of the other modes is nearly linear by observing
nearly periodic, circular orbits in each of their own state
spaces, which is expected because ��B.

The system studied in this paper fits into the class of
nonlinear systems which is close to a coupled chain of linear
harmonic oscillators. Such near-integrable systems have
been studied in �12�, where equipartition of energy and dy-
namic properties related to integrable instability theory of
partial differential equations were investigated �see also
�13��. In particular, systems like this lend themselves to
analysis in action-angle coordinates �14� which highlight the
energy and frequency dependencies in each coordinate while
also characterizing adiabatic invariants. With this in mind,
we perform a second canonical transformation into action-
angle coordinates using the following rules for nonzero
wavenumbers k:

q̂k =
2Jk


k
sin �k, q̂̇k = 
2Jk
k cos �k. �5�

For notational convenience we rename q̂0→x and q̂̇0→y,
and the resulting system takes the form

ẋ = y, �̇k = 
k + �fk�x,J�,�� � ,

ẏ = �g0�x,J�,�� � J̇k = �gk�x,J�,�� � , �6�

for k=1,2 , . . . �N−1�, where �k are angle variables and Jk are
the conjugate actions.

The same simulation which was presented in Fig. 2 is
illustrated in action-angle coordinates in Fig. 3. In this figure
we see that as the transition process proceeds �x going from
less than to greater than zero at t�8800�, the change in
angles �frequencies� are nearly constant within the resolution
of the plot. In addition to this, we find that actions do change
but in a stepwise fashion. We find that the actions change
predominantly when the position of the zeroth mode ap-
proaches −1.0, which is a zone of resonance for the system.
The approximate locations of the resonance zones are labeled
with the letter “R.” Both of these behaviors are a testament
to the near-integrability of the dynamics.

II. INTERNAL RESONANCE

As we have mentioned, resonance is a key factor in the
transition process, as it is a pathway for energy transfer in
coupled oscillators with similar frequencies. When these os-
cillators are nonlinear, with frequencies that change with the
amplitude of oscillation, resonance becomes a time-
dependent phenomenon. That is, as the system evolves it
may pass in and out of resonance or even become trapped in
resonance �see �15� for a description of complex resonance
phenomena�. We are interested in resonance for two reasons:
�1� it is a means for energy transfer which takes energy from
any disturbance on the oscillators to the transition between
the two potential wells and �2� we wish to perform time
averaged analysis of the dynamics by the use of averaging
which itself is sensitive to resonance, and therefore we need
to be familiar with this behavior.

The resonance condition for a multifrequency system is
�16�:

��
� ,
� �� �
1

c�
� �v
, �7�

where �
� ,
� �=
0
0+
1
1+ ¯+
N−1
N−1, 
k�Z \ �0	, and
c ,v are positive constants. The quantity on the left-hand side
of the inequality goes to zero when frequencies become ra-
tionally commensurate. The term on the right-hand side ac-
counts for resonance in small regions where the frequencies
are almost commensurate. In fact the size of the resonance
zone, both in phase space dimension and time spent inside, is
related to this value.

The linear modal frequencies of the unperturbed Hamil-
tonian are not commensurate in our system and therefore
there is no energy exchange between modes when �=0.
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FIG. 3. �Color online� Example numerical simulation in action-
angle coordinates �same parameters and initial conditions as Fig. 2�.
The upper two subplots illustrate the nonzero actions �and momen-
tum of the zeroth mode�, while the lower two subplots illustrate the
position of the zeroth mode and conjugate angles of the nonzero
actions.
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However, when ��0 there are regions in the state space
where the nonlinearity becomes very important. It is in these
regions that the frequencies begin to change and resonance
occurs. This resonance is important as it allows energy to be
transmitted from any disturbance to the collective motion,
leading to the transition or conformation change �3�. We will
specifically discuss the direction of energy transfer or funnel-
ing in Sec. V.

Not only does the presence of multiple frequencies en-
hance energy transfer, it also complicates the analysis of any
system, including the use of tools such as averaging. In sum-
mary, similar frequencies introduce small denominators,
which influences the stability of the dynamics. In addition to
this, resonance alters or destroys adiabatic invariants. In the
case where a pair or more of frequencies are commensurate
in an m-frequency system, the trajectories of the unperturbed
motion fill a torus with a dimension smaller than m, so av-
eraging over the original torus will not capture the dynamics
correctly. That is, the previously dense set of angle trajecto-
ries falls onto a smaller set �subtorus� in the resonant case.
The general idea of how to deal with resonance during aver-
aging is to make a canonical change of variables onto to a
coordinate system that rotates along with the resonant fre-
quency and therefore capture only the slow variation around
this frame of reference. Alternatively, in the case where only
some of the frequencies are resonant the method of partial
averaging �16� is employed. In partial averaging, the vector
of angles is parsed into resonant and nonresonant angles and
averaging is performed using only the nonresonant variables.

III. AVERAGING

In the present study, we perform partial averaging over
the nonzero modes to gain an imperfect reduced representa-
tion of the dynamics. Generally, averaging will offer a re-
duced model of dynamics in certain time or spatial ranges;
here our reduced order representation will represent the dy-
namics well only outside of resonance. To obtain a coarse
representation we average over the angle variables of M non-
zero modes �M �N as the analysis can be performed on a
reduced order model since the transformations are canoni-
cal�. The averaged Hamiltonian becomes

H�x,y,J�� =
1

�2��M�
0

2�

¯ �
0

2�

H�x,y,J�,�� �d�1 . . . d�M .

�8�

For the specific 2–4 potential the resulting averaged oridi-
nary differential equation �ODE� derived from Hamilton’s
equations is

ẋ̄ = ȳ, ẏ̄ = ��� −
3

N
�
k=1

M
J̄k


k
�x̄ −

�x̄3

N
. �9�

In an averaged sense, actions in the higher modes are station-

ary in time �J̇̄k=0, k�1� and feed into the zeroth mode
dynamics. In this sense, Eq. �9� represents dynamics induced
by a parametric 2–4 potential for the planar variables �x ,y�,
where higher order actions �Jk ,k=1,2 , . . . ,M� alter the exis-

tence and location of the equilibrium branches.
There is a dependency between the activation rate and the

amount of disturbance energy �and in particular, the spatial
character of the disturbance energy� which can be captured
quantitatively using the averaged model �9�. In the averaged
sense, the zeroth mode has the typical figure-eight phase
space of the 2–4 potential with equilibria at x̄eq= �
N�. If
all oscillators are at rest so that the zeroth mode is at this
equilibrium, and there is no energy in higher modes, no os-
cillations will occur. As soon as energy from a higher mode
is introduced the oscillators will begin to oscillate. In fact,
the mean �zeroth mode� begins to oscillate as well. This phe-
nomenon is captured in the averaged model by a shift in the
equilibria of the zeroth mode. In fact, the equilibria shift
toward the origin, bringing the separatrix closer to the initial
location of the zeroth mode. With sufficient energy in any
one of these higher order modes, the separatrix of the zeroth
mode will be driven closer to the origin, and eventually the
original location of the zeroth mode will breach it. When this
occurs the zeroth mode will be forced into the rotation state
and transition to the second equilibrium will occur. This con-
cept is illustrated in Fig. 4.

With this in mind, the minimum activation energy be-
comes the amount of energy needed from the higher mode�s�
to pull the separatrix over the original equilibrium location x̄
�this occurs when J4=4.1783 for the example in Fig. 4�. The
activation condition is

U�x̄ = 0.0,J�� = U�x̄ = x̄eq,J�� , �10�

which defines the minimum activation energy for transition.
Performing the necessary calculations, the resulting activa-
tion condition for the 2–4 potential becomes

�
i=1

M
J̄i


i
=

�N

6
, �11�

which describes an affine hyperplane with a dimension equal
to the number of nonzero actions. It is evident in Fig. 4 that
with further increase of action in the higher modes, the two
wells disappear, and the zeroth mode will repetitively circle
both original equilibria in a state of rotation. Indeed a pitch-
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FIG. 4. �Color online� Impact of energy in higher order modes
�e.g., J4� on the zeroth mode, illustrating how the original equilibria
are moved outside of the libration state to the rotation state.
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fork bifurcation exists for these high energy orbits at �i=1
M J̄i


i

= �N
3 which is twice the minimum activation energy �for the

example in Fig. 4 this occurs at J4=8.3567�. It is known that
in this region parametric resonance occurs which brings
completely new phenomena �17�. This has not been studied
in this paper as we focus on low energy transitions at the
present time.

A summary of the activation process is as follows: as the
system evolves from any initial condition, energy transfer
occurs between the modes as it passes through resonance.
Once this passage is complete, if the actions meet condition
�11�, the system will escape from its initial well and transi-
tion to the second well. Passage through resonance will con-
tinue to occur once it is in the second well and in many cases
the energy will be dispersed through the modes once again.
If the condition �11� is met again, the system will re-escape
and return to its initial potential well. If not, it will continue
to librate in the second well.

To calculate the full activation time vs. activation energy
profile we note that the when the oscillation of the zeroth
mode is in its rotation state, the activation time is the time in
which the trajectory crosses x̄=0.0. In fact, since the figure-
eight phase space for the rotation state is symmetric, this is
1/4 of the period of a rotation state. We can analytically
derive the rate of activation by calculating the period of ro-
tation oscillations of the zeroth mode in Eq. �9� as it is para-
metrically altered by higher wavenumber actions. To calcu-
late the period of under a single-mode perturbation we write
the Hamiltonian of the averaged dynamics as

H�x̄, ȳ,J�̄� =
ȳ2

2
− �ax̄2

2
+

bx̄4

4
� ,

a = ��� −
3J̄i


iN
�, b = −

�

N
. �12�

This system admits an analytical solution that is different
inside and outside of the figure-eight separatrix. On the out-
side of the separatrix we calculate the period as

Tout =
4K�
�

out

,

where 
 =
x̄�0�
b


2�a + bx̄�0�2�
, 
out =


a

2
2 − 1

, �13�

where 
 is the elliptic modulus and K�k� is the complete
Jacobi elliptic integral of the first kind. The variable x̄�0� is
the amplitude of the initial condition of the zeroth mode
�x̄�0�=−
N� for the previous discussions�.

For comparison, numerical data was generated using N
=100 oscillators, B=1, �=0.001, and �=1 and is presented
in Fig. 5. The analytical expression captures numerical data
well when the activation rates exceed the modal frequencies;
the discrepancy in lowest mode at high activation rates is
because the modal frequency �over which we average over�
approaches the activation rate itself.

IV. COMPARISON WITH STOCHASTIC ACTIVATION

The results presented above for activation in networks of
coupled oscillators in a noise free environment are new re-
sults in this field. On the other hand, prediction tools for
noise assisted activation have been available for some time.
There are results from nonequilibrium statistical mechanics
that predict the stochastic activation rates for oscillators ex-
periencing Brownian motion in a metastable environment,
termed escape rate theory �see a thorough review in �18��.
Escape rate theory characterizes the transition process of an
inertial mass from a reactant well across a high energy bar-
rier or saddle. The predominant question in rate theory is to
determine how fast particles make the transition from the
reactant to product state when excited by thermal noise. The
theoretical analysis of escape rates began in the 1880s with
Arrhenius, who from experimental results of chemical reac-
tions found that the rate of a chemical reaction took an ex-
ponential form depending on the barrier height, amount of
excitation, and an unknown prefactor. In the 1940s, Kramers
offered new insight into the analytical derivation of this pref-
actor by studying a particle moving in a one-dimensional
bistable potential adhering to Brownian motion. This motion
is described by Langevin dynamics and the diffusion of
probability density is described by the Fokker-Planck equa-
tion.

The results for stochastic transitions that Kramers derived
are associated with the activation dynamics of systems which
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FIG. 5. �Color online� Activation energy vs rate �top� and mini-
mum activation energy �bottom�. Analytical—solid, numerical
simulation—discrete points. �U= �N�

4 is the sum of the barrier
heights and U�0� is the initial disturbance.
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can be described by one reaction coordinate. Any other
modes in the dynamics are assumed to not influence the tran-
sition process or are lumped into the dynamics of the thermal
bath. Our interest, motivated from engineering examples and
some biological examples, is of networked systems with a
strong backbone. Because of this strong backbone, as we
have shown in the previous sections of this paper, the Fourier
modes play an important part in the activation process. Be-
low we intend to show how these modes influence the sto-
chastic transition and the rate predictions from the Kramers
formula.

In order to do this, Langevin simulations were performed
on Eqs. �1� and �2� to determine if the presence of distur-
bance energy in different modes influences the rate. In Fig. 6
we illustrate the stochastic rates using the same parameters
as before with a Langevin damping value of 0.05. In this
case we impose a disturbance energy at a constant value of
5�U in different spatial patterns, including a randomly se-
lected series of positions. The data is simulated for different
temperatures �Boltzmann’s constant k=1.0� and compared to
the Kramers estimate for low damping �see Eq. 4.49 of �18��.
We find that at higher temperatures, the Kramers theory pre-
dicts the behavior well, while at lower temperatures inertia
dominates and the numerical data diverges from the Kramers
estimates. The faster rates observed in the numerical data for
low temperatures may be due to a collective phenomena
from the coupling of the large number of oscillators. With
respect to targeted disturbance, there is a clear distinction in
the stochastic rate when influenced by these disturbances
which is not accounted for in Kramers’ original work. The
reason for presenting these results is not to provide analytical
or numerical tools, but rather to highlight the basic phenom-
enological behavior of the stochastic transition of Eq. �1� and
to illustrate limitations in Kramers theory that should be ac-
knowledged when studying similar systems.

V. SELECTIVE PARTITIONING OF ENERGY

Above we have been able to predict a static relationship
between disturbance energy and activation time. However,

the transfer of energy from modes which contain disturbance
energy �higher modes� to the zeroth mode is a dynamical
process. The equal balance of modal energy �equipartition� is
expected in many high dimensional systems due to ergodic-
ity, but is not always the case. As shown initially by Fermi,
Pasta, and Ulam �11� this balance of energy may not occur
even for relatively simple dynamics. In fact, Ford later illus-
trated that this lack of energy balance is due to a lack of
commensurate temporal frequencies in the set of spatial
modes, and its consequence, the KAM theorem �19�. As we
have mentioned, the frequencies of the linear normal modes
in our model are incommensurate. Without any nonlinear
perturbation to the backbone, we expect there to be no reso-
nance �energy transfer� at all. However as we have shown,
there is no doubt that energy transfer occurs because activa-
tion can be observed by global motions of the zeroth mode
and this is realized by imposing a disturbance on modes of
high wavelength. In fact, the energy transfer does not lead to
equipartition immediately, rather it follows a unidirectional
route to the lowest mode as the system passes through zones
of resonance.

By calculating the Jacobian of Hamilton’s equations for
the action-angle system �6� we obtain a matrix that reveals
the change in action variables as influenced by other actions
and angles. It turns out that the change in action is mostly
dependent on other actions �as opposed to angles�; we
present this submatrix in Fig. 7 for an example simulation
with seven modes. We see that the change in action in any
particular mode is dominated by influences of modes of
equal or higher wavenumber only. This natural funneling of
energy is remarkable and strengthens the robustness of the
transition process. In fact, the funneling concept is associated
with the horizontal-vertical graph theoretic structure of the
dynamics, which has been shown to be a way to characterize
the robustness of a dynamical system �20�.

VI. SUMMARY

We have found that even though this high dimensional
system uses a complex nonlinear process to achieve global
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FIG. 6. �Color online� Stochastic simulation with targeted per-
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bance condition. These rates are compared to the Kramers estimate.

Small Large

�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�

�

�

6

5

4

3

2

1

J
J
J
J
J
J
y

�

�

�

�

�

�

�

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

6

5

4

3

2

1

J
J
J
J
J
J
y

=

FIG. 7. �Color online� Absolute value of the time averaged Jaco-
bian of action variables illustrating the funneling of energy toward
the lowest mode.
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transition between different states, the qualitative nature is
easily understood as a funneling of energy from higher
modes to the lowest mode, whose phase space dynamics is
manipulated by these higher modes. In fact the dynamics of
the zeroth mode parameterized in an averaged sense by dy-
namics of the the higher modes are enough to predict the
activation process. These results were also compared to the
stochastic setting and it was shown that the spatial character

of the perturbation influences the divergence from the Kram-
ers estimate.
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